
NAG C Library Function Document

nag_zupmtr (f08guc)

1 Purpose

nag_zupmtr (f08guc) multiplies an arbitrary complex matrix C by the complex unitary matrix Q which
was determined by nag_zhptrd (f08gsc) when reducing a complex Hermitian matrix to tridiagonal form.

2 Specification

void nag_zupmtr (Nag_OrderType order, Nag_SideType side, Nag_UploType uplo,
Nag_TransType trans, Integer m, Integer n, Complex ap[], const Complex tau[],
Complex c[], Integer pdc, NagError *fail)

3 Description

nag_zupmtr (f08guc) is intended to be used after a call to nag_zhptrd (f08gsc), which reduces a complex
Hermitian matrix A to real symmetric tridiagonal form T by a unitary similarity transformation:

A ¼ QTQH . nag_zhptrd (f08gsc) represents the unitary matrix Q as a product of elementary reflectors.

This function may be used to form one of the matrix products

QC; QHC; CQ or CQH;

overwriting the result on C (which may be any complex rectangular matrix).

A common application of this function is to transform a matrix Z of eigenvectors of T to the matrix QZ of
eigenvectors of A.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: side – Nag_SideType Input

On entry: indicates how Q or QH is to be applied to C as follows:

if side ¼ Nag LeftSide, Q or QH is applied to C from the left;

if side ¼ Nag RightSide, Q or QH is applied to C from the right.

Constraint: side ¼ Nag LeftSide or Nag RightSide.

3: uplo – Nag_UploType Input

On entry: this must be the same parameter uplo as supplied to nag_zhptrd (f08gsc).

Constraint: uplo ¼ Nag Upper or Nag Lower.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08guc

[NP3645/7] f08guc.1

4: trans – Nag_TransType Input

On entry: indicates whether Q or QH is to be applied to C as follows:

if trans ¼ Nag NoTrans, Q is applied to C;

if trans ¼ Nag ConjTrans, QH is applied to C.

Constraint: trans ¼ Nag NoTrans or Nag ConjTrans.

5: m – Integer Input

On entry: m, the number of rows of the matrix C; m is also the order of Q if side ¼ Nag LeftSide.

Constraint: m � 0.

6: n – Integer Input

On entry: n, the number of columns of the matrix C; n is also the order of Q if
side ¼ Nag RightSide.

Constraint: n � 0.

7: ap½dim� – Complex Input/Output

Note: the dimension, dim, of the array ap must be at least maxð1;m� ðmþ 1Þ=2Þ when
side ¼ Nag LeftSide and at least maxð1;n� ðnþ 1Þ=2Þ when side ¼ Nag RightSide.

On entry: details of the vectors which define the elementary reflectors, as returned by nag_zhptrd
(f08gsc).

On exit: ap is used as internal workspace prior to being restored and hence is unchanged.

8: tau½dim� – const Complex Input

Note: the dimension, dim, of the array tau must be at least maxð1;m� 1Þ when
side ¼ Nag LeftSide and at least maxð1;n� 1Þ when side ¼ Nag RightSide.

On entry: further details of the elementary reflectors, as returned by nag_zhptrd (f08gsc).

9: c½dim� – Complex Input/Output

Note: the dimension, dim, of the array c must be at least maxð1; pdc� nÞ when
order ¼ Nag ColMajor and at least maxð1; pdc�mÞ when order ¼ Nag RowMajor.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix C is stored in c½ðj� 1Þ � pdcþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix C is stored in c½ði� 1Þ � pdcþ j� 1�.
On entry: the m by n matrix C.

On exit: c is overwritten by QC or QHC or CQ or CQH as specified by side and trans.

10: pdc – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array c.

Constraints:

if order ¼ Nag ColMajor, pdc � maxð1;mÞ;
if order ¼ Nag RowMajor, pdc � maxð1; nÞ.

11: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

f08guc NAG C Library Manual

f08guc.2 [NP3645/7]

6 Error Indicators and Warnings

NE_INT

On entry, m = hvaluei.
Constraint: m � 0.

On entry, n = hvaluei.
Constraint: n � 0.

On entry, pdc ¼ hvaluei.
Constraint: pdc > 0.

NE_INT_2

On entry, pdc ¼ hvaluei, m ¼ hvaluei.
Constraint: pdc � maxð1;mÞ.
On entry, pdc ¼ hvaluei, n ¼ hvaluei.
Constraint: pdc � maxð1; nÞ.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed result differs from the exact result by a matrix E such that

kEk2 ¼ Oð�ÞkCk2;

where � is the machine precision.

8 Further Comments

The total number of real floating-point operations is approximately 8m2n if side ¼ Nag LeftSide and

8mn2 if side ¼ Nag RightSide.

The real analogue of this function is nag_dopmtr (f08ggc).

9 Example

To compute the two smallest eigenvalues, and the associated eigenvectors, of the matrix A, where

A ¼

�2:28þ 0:00i 1:78� 2:03i 2:26þ 0:10i �0:12þ 2:53i
1:78þ 2:03i �1:12þ 0:00i 0:01þ 0:43i �1:07þ 0:86i
2:26� 0:10i 0:01� 0:43i �0:37þ 0:00i 2:31� 0:92i

�0:12� 2:53i �1:07� 0:86i 2:31þ 0:92i �0:73þ 0:00i

1
CCA

0
BB@ ;

using packed storage. Here A is Hermitian and must first be reduced to tridiagonal form T by nag_zhptrd
(f08gsc). The program then calls nag_dstebz (f08jjc) to compute the requested eigenvalues and nag_zstein
(f08jxc) to compute the associated eigenvectors of T . Finally nag_zupmtr (f08guc) is called to transform
the eigenvectors to those of A.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08guc

[NP3645/7] f08guc.3

9.1 Program Text

/* nag_zupmtr (f08guc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer ap_len, i, j, m, n, nsplit, pdz, d_len, e_len;
Integer tau_len;
Integer exit_status=0;
double vl=0.0, vu=0.0;
NagError fail;
Nag_UploType uplo;
Nag_OrderType order;
/* Arrays */
char uplo_char[2];
Integer *iblock=0, *ifailv=0, *isplit=0;
Complex *ap=0, *tau=0, *z=0;
double *d=0, *e=0, *w=0;

#ifdef NAG_COLUMN_MAJOR
#define A_UPPER(I,J) ap[J*(J-1)/2 + I - 1]
#define A_LOWER(I,J) ap[(2*n-J)*(J-1)/2 + I - 1]

order = Nag_ColMajor;
#else
#define A_LOWER(I,J) ap[I*(I-1)/2 + J - 1]
#define A_UPPER(I,J) ap[(2*n-I)*(I-1)/2 + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f08guc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%*[^\n] ", &n);
pdz = n;

ap_len = n*(n+1)/2;
tau_len = n-1;
d_len = n;
e_len = n-1;
/* Allocate memory */
if (!(ap = NAG_ALLOC(ap_len, Complex)) ||

!(d = NAG_ALLOC(d_len, double)) ||
!(e = NAG_ALLOC(e_len, double)) ||
!(iblock = NAG_ALLOC(n, Integer)) ||
!(ifailv = NAG_ALLOC(n, Integer)) ||
!(isplit = NAG_ALLOC(n, Integer)) ||
!(w = NAG_ALLOC(n, double)) ||
!(tau = NAG_ALLOC(tau_len, Complex)) ||
!(z = NAG_ALLOC(n * n, Complex)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A from data file */
Vscanf(" ’ %1s ’%*[^\n] ", uplo_char);

f08guc NAG C Library Manual

f08guc.4 [NP3645/7]

if (*(unsigned char *)uplo_char == ’L’)
uplo = Nag_Lower;

else if (*(unsigned char *)uplo_char == ’U’)
uplo = Nag_Upper;

else
{

Vprintf("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;

}
if (uplo == Nag_Upper)

{
for (i = 1; i <= n; ++i)

{
for (j = i; j <= n; ++j)

{
Vscanf(" (%lf , %lf)", &A_UPPER(i,j).re,

&A_UPPER(i,j).im);
}

}
Vscanf("%*[^\n] ");

}
else

{
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= i; ++j)

{
Vscanf(" (%lf , %lf)", &A_LOWER(i,j).re,

&A_LOWER(i,j).im);
}

}
Vscanf("%*[^\n] ");

}

/* Reduce A to tridiagonal form T = (Q**H)*A*Q */
f08gsc(order, uplo, n, ap, d, e, tau, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08gsc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Calculate the two smallest eigenvalues of T (same as A) */
f08jjc(Nag_Indices, Nag_ByBlock, n, vl, vu, 1, 2, 0.0,

d, e, &m, &nsplit, w, iblock, isplit, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08jjc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Print eigenvalues */
Vprintf("Eigenvalues\n");
for (i = 0; i < m; ++i)

Vprintf("%8.4f%s", w[i], (i+1)%8==0 ?"\n":" ");
Vprintf("\n\n");
/* Calculate the eigenvectors of T storing the result in Z */
f08jxc(order, n, d, e, m, w, iblock, isplit, z, pdz, ifailv,

&fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08jxc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Calculate all the eigenvectors of A = Q*(eigenvectors of T) */
f08guc(order, Nag_LeftSide, uplo, Nag_NoTrans, n, m, ap,

tau, z, pdz, &fail);
if (fail.code != NE_NOERROR)

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08guc

[NP3645/7] f08guc.5

{
Vprintf("Error from f08guc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print eigenvectors */
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, m,

z, pdz, Nag_BracketForm, "%7.4f", "Eigenvectors",
Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80, 0,
0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
END:
if (ap) NAG_FREE(ap);
if (d) NAG_FREE(d);
if (e) NAG_FREE(e);
if (iblock) NAG_FREE(iblock);
if (ifailv) NAG_FREE(ifailv);
if (isplit) NAG_FREE(isplit);
if (tau) NAG_FREE(tau);
if (w) NAG_FREE(w);
if (z) NAG_FREE(z);

return exit_status;
}

9.2 Program Data

f08guc Example Program Data
4 :Value of N
’U’ :Value of UPLO

(-2.28, 0.00) (1.78,-2.03) (2.26, 0.10) (-0.12, 2.53)
(-1.12, 0.00) (0.01, 0.43) (-1.07, 0.86)

(-0.37, 0.00) (2.31,-0.92)
(-0.73, 0.00) :End of matrix A

9.3 Program Results

f08guc Example Program Results

Eigenvalues
-6.0002 -3.0030

Eigenvectors
1 2

1 (0.7299, 0.0000) (-0.2595, 0.0000)
2 (-0.1663,-0.2061) (0.5969, 0.4214)
3 (-0.4165,-0.1417) (-0.2965,-0.1507)
4 (0.1743, 0.4162) (0.3482, 0.4085)

f08guc NAG C Library Manual

f08guc.6 (last) [NP3645/7]

	f08guc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	side
	uplo
	trans
	m
	n
	ap
	tau
	c
	pdc
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

