f08 — Least-squares and Eigenvalue Problems (LAPACK) f08guc

NAG C Library Function Document

nag zupmtr (f08guc)

1 Purpose

nag_zupmtr (f08guc) multiplies an arbitrary complex matrix C' by the complex unitary matrix () which
was determined by nag_ zhptrd (f08gsc) when reducing a complex Hermitian matrix to tridiagonal form.

2 Specification

void nag_zupmtr (Nag_OrderType order, Nag_SideType side, Nag_UploType uplo,
Nag_TransType trans, Integer m, Integer n, Complex ap[], const Complex taul],
Complex c¢[], Integer pdc, NagError xfail)

3 Description

nag_zupmtr (f08guc) is intended to be used after a call to nag_zhptrd (f08gsc), which reduces a complex
Hermitian matrix A to real symmetric tridiagonal form 7 by a unitary similarity transformation:

A =QTQ". nag zhptrd (f08gsc) represents the unitary matrix (as a product of elementary reflectors.
This function may be used to form one of the matrix products

QC, Q"C, cQor CQ",
overwriting the result on C' (which may be any complex rectangular matrix).

A common application of this function is to transform a matrix Z of eigenvectors of 7" to the matrix Q7 of
eigenvectors of A.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

S Parameters
1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: side — Nag_SideType Input
On entry: indicates how Q or Q is to be applied to C' as follows:
if side = Nag_LeftSide, Q or Q" is applied to C' from the left;
if side = Nag_RightSide, Q or Q' is applied to C' from the right.
Constraint. side = Nag_LeftSide or Nag_RightSide.
3: uplo — Nag UploType Input
On entry: this must be the same parameter uplo as supplied to nag zhptrd (f08gsc).
Constraint: uplo = Nag_Upper or Nag_Lower.

[NP3645/7] f08guc.1

f08guc NAG C Library Manual

4: trans — Nag TransType Input

On entry: indicates whether Q or Q" is to be applied to C as follows:
if trans = Nag NoTrans, () is applied to C;

if trans = Nag_ConjTrans, Q" is applied to C.

Constraint. trans = Nag NoTrans or Nag ConjTrans.

5: m — Integer Input
On entry: m, the number of rows of the matrix C; m is also the order of @) if side = Nag_LeftSide.

Constraint: m > 0.

6: n — Integer Input

On entry: n, the number of columns of the matrix C; n is also the order of @ if
side = Nag_RightSide.

Constraint: n > 0.

7: ap[dim] — Complex Input/Output

Note: the dimension, dim, of the array ap must be at least max(l,m x (m+ 1)/2) when
side = Nag_LeftSide and at least max(1,n x (n+ 1)/2) when side = Nag_RightSide.

On entry: details of the vectors which define the elementary reflectors, as returned by nag zhptrd
(f08gsc).

On exit: ap is used as internal workspace prior to being restored and hence is unchanged.

8: tau[dim]| — const Complex Input

Note: the dimension, dim, of the array tau must be at least max(l,m —1) when
side = Nag_LeftSide and at least max(1,n — 1) when side = Nag_RightSide.

On entry: further details of the elementary reflectors, as returned by nag zhptrd (f08gsc).

o: c[dim] — Complex Input/Output

Note: the dimension, dim, of the array ¢ must be at least max(l,pde x n) when
order = Nag_ColMajor and at least max(1, pdc x m) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix C is stored in ¢[(j — 1) x pdec + ¢ — 1] and
if order = Nag_RowMajor, the (i,j)th element of the matrix C' is stored in ¢[(i — 1) x pde + j — 1].

On entry: the m by n matrix C.
On exit: ¢ is overwritten by QC' or QHC or C'Q or C’QH as specified by side and trans.

10: pdc — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array c.
Constraints:

if order = Nag_ColMajor, pdc > max(1, m);
if order = Nag_RowMajor, pdc > max(1,n).

11: fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

f08guc.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

6 Error Indicators and Warnings

NE_INT

On entry, m = (value).
Constraint: m > 0.

On entry, n = (value).
Constraint: n > 0.

On entry, pde = (value).
Constraint: pdc > 0.

NE_INT 2

On entry, pde = (value), m = (value).
Constraint: pde > max(1, m).

On entry, pde = (value), n = (value).
Constraint: pde > max(1,n).

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

f08guc

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed result differs from the exact result by a matrix E such that
1El, = O Cll,,

where € is the machine precision.

8 Further Comments

The total number of real floating-point operations is approximately 8m’n if side = Nag_LeftSide and

8mn® if side = Nag_RightSide.

The real analogue of this function is nag_dopmtr (f08ggc).

9 Example

To compute the two smallest eigenvalues, and the associated eigenvectors, of the matrix A, where

—2.28 4-0.00¢ 1.78 — 2.03¢

A 1.78 +2.03: —1.12 +0.00z

2.26+0.10¢ —0.12 +2.53¢
0.01 +-0.43: —1.07 4 0.86¢

2.26 —0.10¢ 0.01 —0.43: —-0.37+0.00: 2.31-0.92¢ |’

—0.12 —2.53; —1.07 —0.86¢

using packed storage. Here A is Hermitian and must first

2.314+0.92¢ —0.73 + 0.00¢
be reduced to tridiagonal form 7' by nag_zhptrd

(f08gsc). The program then calls nag_dstebz (f08jjc) to compute the requested eigenvalues and nag_zstein
(f08jxc) to compute the associated eigenvectors of 7. Finally nag zupmtr (f08guc) is called to transform

the eigenvectors to those of A.

[NP3645/7]

f08guc.3

f08guc NAG C Library Manual

9.1 Program Text

/* nag_zupmtr (f08guc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
/* Scalars *x/
Integer ap_len, i, j, m, n, nsplit, pdz, d_len, e_len;
Integer tau_len;
Integer exit_status=0;
double v1=0.0, vu=0.0;
NagError fail;
Nag_UploType uplo;
Nag_OrderType order;
/* Arrays */
char uplo_char([2];
Integer *iblock=0, *ifailv=0, #*isplit=0;
Complex *ap=0, *tau=0, *z=0;
double =*d=0, *e=0, #*w=0;

#ifdef NAG_COLUMN_MAJOR

#define A_UPPER(I,J) apl[Jd*(J-1)/2 + I - 1]

#define A_LOWER(I,J) apl[(2*n-J)*(J-1)/2 + I - 1]
order = Nag_ColMajor;

#else

#define A_LOWER(I,J) apl[I*(I-1)/2 + J - 1]

#define A_UPPER(I,J) ap[(2#n-I)x(I-1)/2 + J - 1]
order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
Vprintf ("f08guc Example Program Results\n\n");

/* Skip heading in data file */
Vscanf ("s*x["\n] ");

Vscanf ("$1d%s*[*\n] ", &n);

pdz = n;

ap_len = nx(n+l)/2;

tau_len = n-1;

d_len = n;

e_len = n-1;

/* Allocate memory */

if (!(ap = NAG_ALLOC(ap_len, Complex)) ||
d = NAG_ALLOC(d_len, double)) ||

e = NAG_ALLOC(e_len, double)) ||
iblock = NAG_ALLOC(n, Integer))
ifailv = NAG_ALLOC(n, Integer))
isplit = NAG_ALLOC(n, Integer))
w = NAG_ALLOC(n, double)) ||
tau = NAG_ALLOC(tau_len, Complex)) ||
z = NAG_ALLOC(n * n, Complex)))

(
(
(I
(|
(|
(

(

(

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

¥

/* Read A from data file x/
Vscanf (" ' %1s ’'%*["\n] ", uplo_char);

108guc.4 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08guc

if (*(unsigned char *)uplo_char == 'L’)
uplo = Nag_Lower;
else if (*(unsigned char #*)uplo_char == 'U’)
uplo = Nag_Upper;
else
{
Vprintf ("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;
}
if (uplo == Nag_Upper)
{
for (i = 1; i <= n; ++1i)
{
for (3 = 1i; j <= n; ++3)
{
Vscanf (" (%1f , %1f)", &A_UPPER(i,Jj).re,
&A_UPPER(1i,3j).im);
}
¥
Vscanf ("sx["\n] ");
}
else

{

for (i = 1; i <= n; ++1i)

for (3 = 1; j <= 1i; ++3)
{
Vscanf (" (%1f , %1f)", &A_LOWER(i,j).re,
&A_LOWER(i,3j).im) ;
}
b
Vscanf ("sx[*\n] ");

}

/* Reduce A to tridiagonal form T = (Q**H)*A*Q */
f08gsc(order, uplo, n, ap, d, e, tau, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08gsc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Calculate the two smallest eigenvalues of T (same as A) */
f08jjc(Nag_Indices, Nag_ByBlock, n, vl, vu, 1, 2, 0.0,
d, e, &m, &nsplit, w, iblock, isplit, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08jjc.\n%s\n", fail.message);
exit_status = 1;
goto END;
3

/* Print eigenvalues */
Vprintf ("Eigenvalues\n") ;
for (i = 0; i < m; ++1)

Vprintf ("%8.4f%s", wl[i], (i+1)%8==0 2"\n":" ") ;
Vprintf ("\n\n") ;
/* Calculate the eigenvectors of T storing the result in Z */
f08jxc(order, n, d, e, m, w, iblock, isplit, z, pdz, ifailv,

&fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08jxc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}

/* Calculate all the eigenvectors of A = Qx(eigenvectors of T) =*/
f08guc(order, Nag_LeftSide, uplo, Nag_NoTrans, n, m, ap,

tau, z, pdz, &fail);
if (fail.code != NE_NOERROR)

[NP3645/7] f08guc.5

f08guc
{
Vprintf ("Error from f08guc.\n%s\n", fail.message);
exit_status = 1;
goto END;
¥

/* Print eigenvectors */

x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, m,
z, pdz, Nag_BracketForm, "%7.4f", "Eigenvectors"

Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80,

0, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
END:
if (ap) NAG_FREE (ap);
if (d) NAG_FREE(4);
if (e) NAG_FREE(e);
if (iblock) NAG_FREE (iblock) ;
if (ifailv) NAG_FREE(ifailv);
if (isplit) NAG_FREE(isplit);

if (tau) NAG_FREE (tau);
if (w) NAG_FREE (w);
if (z) NAG_FREE(z);

return exit_status;

9.2 Program Data

f08guc Example Program Data

4
IUI
(-2.28, 0.00) (1.78,-2.03) (2.26, 0.10) (-0.12, 2.53)
(-1.12, 0.00) (0.01, 0.43) (-1.07, 0.86)
(-0.37, 0.00) (2.31,-0.92)
(-0.73, 0.00)

9.3 Program Results

f08guc Example Program Results

Eigenvalues
-6.0002 -3.0030

Eigenvectors

4165,-0.1417 2965,-0.1507

2
7299, 0.0000 2595, 0.0000)
)
)
1743, 0.4162 3482, 0.4085)

1
(0.) (=0.
(-0.1663,-0.2061) (0.5969, 0.4214
(-0.) (=0.
(0.) (0.

S w N

NAG C Library Manual

:Value of N
:Value of UPLO

:End of matrix A

f08guc.6 (last)

[NP3645/7]

	f08guc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	side
	uplo
	trans
	m
	n
	ap
	tau
	c
	pdc
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

